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ON THE DIRECT SOLUTION OF THE GOVERNING EQUATION
FOR RADIATTON-RESISTED SHOCK WAVES

By Walter E. Pearson

SUMMARY
J2670

This investigation 1s concerned with the singular, nonlinear, integral equa-
tion that arises in the theoretical study of inviscid, radiation-resisted shock
waves without heat conduction. A simple, iterative technique is given for the
solution of this equation. Sufficient conditions for the convergence of the
iteration are gilven, and the technique is then applied to two examples with
different shock and radiation strengths. When the velocity profiles obtained are
compared with earlier results which adapt a specialized approximstion from astro-

i ery close ree t is reveagled.
physics, very agreemen al A T H O

INTRODUCTION

Recent studies (refs. 1 and 2) of radiation-resisted shock waves have exhib-
ited velocity and temperature profiles for characteristic combinations of shock
strength and radiation intensity. The singular, nonlinear integral equation
which governs the physical structure of the shock wave is developed from the lsws
of conservation of mass, momentum, and energy; its solution is then approximated
to obtain the profiles mentioned.

The integrand of the governing integral equation contains the influence
function

K(y,z) = sga(y - 2)Ba(ly - zl)

where Es(t) is the integro-exponential function of order 2. (See ref. 3.)
References 1 and 2 approximate this influence function by the use of

Ex(t) = me™0t

The constants, m and n, are assigned by criteria which are intuitively chosen to
fit the physical situation.

This kind of approximation has long been used in the radiation problems of
astrophysics. It is natural that the question of its utility in the realm of gas
dynamics should arise. The present study was initiated to provide an answer to
this question, and it uses the analysis leading to the governing equation,
developed in the earlier papers, as its starting point. During the course of the
investigation, 1t was realized that the technique of successive approximations
was not only applicable for purposes of the present study, but obviates the use
of more intricate methods in many problems of radiative transfer.



It is therefore intended that the present paper serve two functions: first,
to present a direct method of solving the governing equation, and second, to
compare results from the direct solution and the approximate solution obtained in
reference 1.

IMPORTANT SYMBOLS

Ex(t) integro-exponential function of order 2

h specific enthalpy

K(y,z) kernel fuction of the governing integral equation

P static pressure

q heat flux due to radiation

T gas temperature

u(y) gas velocity

v(y) normalized gas velocity

y "dimensionless distance" from the shock wave

7 ratio of specific heats

A parameter of the governing integral equation

o) gas density

W(y) the integral appearing in the governing equation, multiplied by A
ANALYSIS

A brief recounting of the basic equations of references 1 and 2 will be given
to establish the point of departure for the present work.

The Governing Eguation

The flow under consideration is one-dimensional, steady, inviscid, and with-
out heat conduction, but the gas is both a radiating and absorbing medium.




The conservation laws then give

d
= (pu) =0 mass la)
dx(p ( ) (
%% + pu_%% =0 (momentum) (1b)
pu,QE _pd 4. (energy) (1e)

dx dx dx

Here, u 1is the gas velocity, h 1is the specific enthalpy, p 1s the static pres-
sure, p 1is the density, and q 1s the heat flux due to radiation. These equa-
tions can be integrated immediately to give

pu =T (2a)

I'u +p = Tey (2b)

T'ep (2¢)

r[h + (1/2)u2] +q
where I', cj, and c, are constants of integration.
At this point, it is convenient to assume that the gas is a perfect gas with
gas constant R = ¢p - ¢y, and a constant ratio of specifiec heats 7 = cp/cv.
The perfect gas assumption also implies the relations
p = pRT and h = cpT

where T 1is the gas temperature. These relations, when combined with equations
(2a), (2v), and (2c), give

_ule; - w
T = —__—%ﬁ———- (3)
and
2 o 2 g 2= 20 -1) )

c =
y +1 Yy +1 27T + 1)

Equation (4) is the governing equation for the velocity profile, and equation
(3) defines the temperature profile in terms of velocity. It remains to supply
an expression for the radiative heat flux, q.

In reference 1, q is defined Iin terms of a dimensionless distance, y,

given by
Jo
= d
y o a(z)dz



where the function ofx) is the absorption coefficient for an sbsorbing and
emitting grey gas. The expression for ¢q is

y (o 0]
aly) = 2\/P oT*(2)Ex(y - z)dz - 2\/n 0T4(Z)E2(Z - y)dz (%)

In this equation, o 1s the Stefan-Boltzmann constant, and Es(t) is a particular
member of the family of integro-differential functions of order n.

X 4z
Ep(t) =fl S — dz (6)

Z

The expression for q(y) can be shortened conveniently by the convention

K(y,z) = sgn(y - z)Ba(ly - z]) (7)

With this notation, equation (5) becomes

a(y) = EGf_OOT4(z)K(y,z)dz

/

and the governing equation (%) is written as

#ly) - —ewty) » 2= o, - 0B [ e (o)

Now equation (3) shows that T¢ can be expressed in terms of u, so that equa-
tion (8) is an integral equation. Before a substitution is made for T4, however,
the variable is changed to

v(y) = 2@

Ca

This will further simplify equation (8), and restrict the range of the unknown

function in equation (8) to 0 < v(y) < 1. With this substitution, equation (3)
becomes

() = SE[v(y) - va(y)] (9)

and equation (8) becomes

- 1) Ly -1
<7 + l> v(y) + 77+ 2212 = 1‘%; " l)gzl f [v(z) - v*(2) *K(y,z)

(10)




Further simplification of eguation (10) is possible by setting

v(-») = v,

v(4x) = vo
Since Ep|#x - z]| = O for all =z, it follows that K(#w,z)= 0. Hence, vi and
v, are roots of the equation

v2(y) - <727 >V(y) s2r-1)c2 _,

+ 1 7 +1 ¢

This shows that

- c
27 __ - vy + Ve and 2(y - 1) C2 = ViVso

7y + 1 Yy + 1 012

Therefore , equation (10) is rewritten as
[v(y) = vallv(y) - v2] = 7\f [v(z) - v®(2)1 K(y,z)dz
with

- Ly - 1)0016
r(y + L

A

It is at this point that references 1 and 2 make the approximation

Eo(t) = me 20

Direct Solution of the Nonlinear Equation

In what is to follow, the notation ¥(y) will be used for the right-hand

term of equation (11); that is,

v (@) - @ 128 = ) = v - v ) - vl

(1)

(12)

Since vi > v(y) > v, for all y (ref. 1), the right side of equation (12) shows

that V(y) <0 for all y. From

v(y) =1 ;’ Y2 iﬁl 5 V2>2 + ¥(y)

(13)



it is clear that

2
¥(y) > - <1;_;_Vz>
Therefore, the range of V(y) is bounded by
2
- <X_l__;_2> <¥(y) <0

In reference 1 it is shown that v(y) is a monotone decreasing function, and
this provides a means for choosing the proper sign (+) in equation (13). The
origin has been fixed so that

+
v(y) = 1272 > 2 for y=0

and, hence,

v(y) > Z&;%;Xé for y<O0

vy + Vo

5 for y >0

v(y) <

With this in mind, equation (13) can be written

=_"V:|_+'V'2_ Vl—VZT
v(y) = —=5—% - san(y) —=——=2) +¥(y) (14)

Equation (14), by removing the ambiguity of sign in equation (13), permits
a reformulation of the governing equation (11) with V(y) as the unknown function.
When V(y) is determined, v(y) is uniquely defined. Moreover, the definition of
¥(y) implies that it is a continuous function, defined for all y, and from this
fact, it can be shown that f[y(y)], where

[v(y) - v3(y) 1% = £[¥(3)] = {vlvg - ()

2
- (v ]| TR ) [ ) i ] }

(15)
is continuous except for a possible jump discontinuity at y = O.

To see this, it is only necessary to show that v(y) is continuous except
for a possible jump discontinuity at y = 0.

j
{
I
\

|



Since v(y) always takes on the values v, and Vo, the right side of equa-
tion (12) implies that V¥(y) always takes on the value

Y(#o) = 0
If V(y) assumes any value, say Vo < O, then Vy(y) must take on all values

between V¥ and y(2x) because VY(y) is a continuous function. Equation (14) then
shows that v(y) takes on all values in the two branches

2 2
vi > v(y) _>_V1'2*V2 +/<V1;V2> + Vg anXmT“’a-/<Y_lé_"a> + vy > v(y) > Vs

If V(y) takes on the value -[(v - vz)/2]2, then the two branches become con-
tiguous, and v(y) is a continuous function. If V(y) does not take on this
value, v(y) makes a jump at y = O which is symmetrical about the ordinate

(vi + Vvo)/2.

With V(y) as defined in equation (12), and f[y(y)] as defined in equation
(15) , the governing equation (11) can be rewritten

W(y) = 7\‘[_ £lv(z) IX(y,z)dz (16)

o 0]

Equation (16) will be solved for V(y), which will then yield the velocity pro-
file, v(y), through equation (14). However, to solve equation (16), it will be
convenient to rid the integral of its infinite limits.

That this is possible can be seen by referring back to egquation (11) and

writing
L/_:[v(z) - P2) Ky 2)dz =I;a + j:: + /;00 (17)

where a 1is a constant to be determined later. It can be shown that for any
positive number, R, it is possible to choose the constant, a, so that

—a -
‘Jf [v(z) - vz(z)]4K(y,z)dz + h/; [v(z) - v2(z)]4K(y,z)dz < lO—R

In fact, if an error no larger than 107R is permissible in v(y), then it suf-
fices that a be chosen so that

_R 2
10 > ZZ Es(a)




Since Es(t) is monotonic decreasing with

lim Eg(t) = 0

t->00

the constant,4a, can always be determined. Sketch (a) shows the relationship
petween (2/47)Ez(a) and a.

Sketch (a)

With & chosen to provide an error no larger than lO—R in v(y), interest is
centered on the interval

-a<y<a
for it is clear that
v(y) >vy- 108 if y<-a

v(y) <vo + 107R if y>a

For y in the interval [-a, a), and a permissible error of 107R in v(y), equation
(16) is replaced by

-8 a 0
Y(y) = 7\/_00 (va- vy ) K(y,z)az + %f_af[llr(Z)]K(yJZ)dz + %fa (va - v2?)*K(y,z)dz
(18)




Hence, if j:;? and jém are carried out (ref. 3), the governing equation (11) is

written

. a
W) = 1)+ | e Gy ma (19)
-a
where
T(y) = AMva - vi ) *Es(y + a) - AN(va - v22)*Es(a - ) (20)

Equation (19) is solved by the construction of a sequence of functions

{?n(y)}- defined as follows:

a
\lfn+l(Y) = T(y) + 7\'/_‘_af[‘l/n(z)]K(.-sz)dz (Il =0,1,2, . . ') (21)
with V¥, (y) = 0. It is to be noted that V¥ =0 corresponds to a step function
with
v(y) = v1 for y<O0
and

v(y) = vo for y >0

It is seen from the recursion equation (21) that, if the sequence converges,
the limit function must be a solution to equation (19). Necessary and sufficient

conditions for the convergence of the sequence Wn(Y)}' are not known. The

following sufficient conditions (Hammerstein, ref. L4), are quite strong in
restricting the magnitudes of A, f[V¥(y)]l, and X(y,z). They are:

a
(1) A=2(y) = szjr K*(y,z)dz exists
-8
(ii) £[vy(y)] satisfies a Lipschitz condition

[£(vy) - £(Va2) | <C(y) vy - Vsl

a
(iii) Wheref A2(y)c3(y)ay = M <1
-a

Notice that (ii) does not restrict C(y) to be continuous; hence, £(¥) need not
be continucus. In fact, all that is required of any of the functions is that
their squares be integrable. (Weaker and more precise conditions are given by
Hammerstein.) Certainly, all functions of the governing equation (19) have
integrable squares. Condition (i) is satisfied for any kernel



i}

K(y,z) = Ex(ly - 2l) (n > 1)

or

1

K(y,z) = sgn(y - z)En(ly - zl)

These are the kernel functions encountered in many radiation problems.

The most stringent of the conditions for convergence is condition (iii),
which restricts the magnitudes of A, K(y,z), and f{V¥(y)]. It is easily shown
that [K(y,z)| <1 and f£[y(y)] <1/4* 1in equation (19), but the parameter A,
for a given gas, is a function of both shock strength and radiation intensity
(ref. 1). When both are "sufficiently strong," it was found by numerical experi-
ment that the sequence does not converge.

To see that the sequence {Fh(y)}' must converge when (i), (ii), and (iii)

are satisfied, it is of value to note that (21) gives

a,
faa@) - @) =2 [ {e1a@1 - rliy e bty (22)
Using (ii), we have .
N (7)) - () | < Af_aC(z)wn(z) - Yy, (2) 11K(y,2) laz (23)

By use of the Cauchy-Bunyakovski-Schwarz inequality, equation (23) gives

a, a
Vaaa(¥) = W) P <22 f y2)az | @ y(2) - v ()17 az

= A2(y) c*(2) [¥y(z) - v, (2)] az
. ~a n n-1
(2k)

We have

v2@ = [ [ oty aa ] < @a)

a

g
k? = \/ﬂ 2(0)dz
-8

with

10




Then from (iii) (24) gives
5 a
va(y) - v 1° < k.ZA?(y)\/p C2(z)A%(z)dz < KM2AR(y)
-a

Continuing

s (3) - ¥o(3) 1 < k3M*A2(3)

Din+a(y) - (9 1% < ¥2M%4%(y)

and so

e (37) - () | < ROA(Y) | (25)

This last equation shows convergence of the sequence {?n(y)}- at every point
where [A(y)| < », since (iii) assumes M2 < 1.

It has been stated that for a given gas, the parameter A\ is a function of
shock strength and radiation intensity. To see this, it is necessary to recall
that

A = Moy - 1)oe,®
r(y + 1)r*

while, from equations (5) and (9)

.- 2;:18[m[v(z) - v3(2) I"K(y,2)az

so that
A= 2a

r'(y + l)clzt/ﬂ [v(z) - v2(z)]4K(y,z)dz

This shows that A 1s a function of q, the radiative heat flux and, hence, is a
function of radiation intensity. That A is also a function of shock strength
is evident from equation (11) which shows that A is a function of vj and Vs
which, in turn, determine shock strength.



Numerical Procedure

Construction of the sequence {yn(yﬁ}- for the governing equation (19) was

accomplished by an iterative procedure on an IBM 7090 computer. The integration
was carried out using Gaussian quadrature methods with the number of abscissas
increasing as y = O 1s approached.

With wo(y) =0, it is possible to obtain an analytic expression for Vi(y)
from equation (21). The number and position of the abscissas were determined by
the requirement that the analytic and numerical methods yield values for v[Vyi(y)]
which agreed at every abscissa to within 107°.

With the constant a set equal to 5, the error in computing v(y) from
equation (11) is less than 2/4*Xx107° ~ 8x107®. Since this error is the same
order of magnitude as that in the numerical integration, the interval [-5,5] was
chosen for the range of the integral in equation (11).

The interval [-5,5] was subdivided by the insertion of a total of 129 points,
vi(d =1,2, + « ., 129). The values of VY(y) = lim ¢,(y) were approximated at
n— o

these points, the approximation being considered accurate when
J=1iz9

) ¥l ] - V()11 < 207

J=1

An exponential interpolation was used to determine values of wn(y) between the
chosen abscissas.

RESULTS AND DISCUSSION

Figure 1 depicts two velocity profiles which result from dissimilar physical
conditions. The data for both graphs were obtained by the methods of this paper
with particular values of A chosen to coincide with two examples considered in
reference 1. In order that the profiles of figure 1 could be accurately compared
with their counterparts from reference 1, the numerical values used in construct-
ing the graphs of reference 1 were obtalined. Comparison was then made between
numerical values from reference 1 and those from the direct solution, used in
constructing figure 1. The two methods yield results which differ so slightly
that graphical comparison is best made on the basis of percentage error.

Percentage error = (v(y) from reference 1) - (v(y) from direct solution)

v(y) from direct solution

12




The comparison is made in figure 2. It is to be noticed that the close agreement
persists as A changes by a factor of 10, as it does when the physical situation
changes from a weak shock and weak radiation to a strong shock and strong
radiation. The largest percentage error in the entire interval [-5,5], for any
of the examples compared, was 1.07 percent; this was obtained with A equal %o
100. For |y| > 5, both the direct solution and the results of reference 1 give
the same result to 6 decimal places.

It will be noticed that figure 2 shows the percentage error to be nearly
symmetrical about the shoek for A ~ 10, but not so symmetrical for A ~ 100.
There is no reason to believe that the difference between the results from the
two methods should exhibit symmetry. Both methods did, however, clearly show the
velocity profile to be asymmetrical about the shock, with the asymmetry becoming
more noticeable with increasing A.

It is not known what part of the actual difference in results is due to the
errors inherent in numerical processes. As stated earlier, there is reason to
believe that the direct solutions by methods of this paper yield velocity profiles
vhich are accurate to at least 107 in v(y).

Ames Research Center
National Aercnautics and Space Administration
Moffett Field, Calif., Sept. 26, 1963
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